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Intermediate-complexity models are models which describe the dynamics of the
atmosphere and/or ocean in less detail than conventional General Circulation
Models (GCMs). At the same time, they go beyond the approach taken by
atmospheric Energy Balance Models (EBMs) or ocean box models by using
sophisticated parameterizations of the unresolved flow or by explicitly resolving
the equations of geophysical fluid dynamics albeit at coarse spatial resolution.
Being computationally fast, intermediate-complexity models have the capability
to treat slow climate variations. Hence, they often include components of the
climate system that are associated with long-term feedbacks like ice sheets,
vegetation and biogeochemical cycles. Here again they differ from conventional
GCM-type models that feature only atmosphere and ocean/sea-ice components.
Many different approaches exist in building such a reduced model, resulting in
a ‘spectrum of Earth system Models of Intermediate Complexity closing the gap
between EBMs and GCMs’.  2010 John Wiley & Sons, Ltd. WIREs Clim Change 2010 1 243–252

The present paper discusses different types of
intermediate-complexity models and the phenom-

ena for which they are most suitable, comparing
their utility to General Circulation Model (GCM)-
type models. Earth system Models of Intermediate
Complexity (EMICs) have been widely applied over
the last decade in research which often would not have
been feasible with GCMs, such as large-ensemble sce-
nario simulations of potential future climate change
and the study of climate variations ranging from rapid
events to glacial cycles and Milankovitch timescales.
This has yielded substantial knowledge and a range of
hypotheses on the working of the climate system.

Many approaches exist to modeling the climate
system. These range from conceptual models, like
atmospheric energy balance models (EBMs) and ocean
box models, to complex GCMs of the atmosphere
and/or ocean. The first type of models are based
on a priori concepts of the functioning of (specific
aspects of) the climate system. They are designed
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to be computationally efficient. In many cases they
may be expressed in the form of simple dynamical
systems,1 the steady state of which may be computed
analytically. GCMs, on the other hand, only became
feasible because the birth of high-speed computers
in the 1960s. As computing power has grown
exponentially over the last decades, GCMs could
become increasingly more complex.

CONCEPTUAL VERSUS COMPLEX
MODELS

EBMs2,3 solve the radiative heat balance of the
atmosphere in terms of the surface air temperature. In
their simplest zero-dimensional form they describe the
global heat budget. They also exist in one-dimensional
(latitudes) or two-dimensional form (latitudes and
longitudes), generally with diffusive horizontal heat
transport. EBMs have been widely applied, e.g., to the
study of glacial cycles, bistability associated with the
ice-cap albedo feedback and future climate change,
see the review paper by North et al.4 The oceanic
counterparts of EBMs are so-called box models,
where the boxes represent reservoirs with different
temperature and salinity. This type of model was
developed to study the density-driven circulation
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between reservoirs, an analog for the large-scale
ocean circulation, which was found to exhibit two
stable regimes of flow.5 Many extensions of these
basic concepts have been proposed, including coupled
EBM-Stommel models.6 Even though they are simple,
conceptual models may have quite complex behavior.

GCMs solve the fundamental equations of
motion, together with those for the evolution of tem-
perature and moisture (atmosphere) or temperature
and salinity (ocean). They also contain parameteriza-
tions of processes that occur on small spatial scales
which cannot be explicitly resolved, like cloud for-
mation, the turbulent exchange of heat, moisture, and
momentum at the air–sea and air–land interfaces, deep
convection in the ocean, etc. These parameterizations
(i.e., descriptions in terms of the resolved variables) are
generally based on observational or high-resolution
numerical process studies. GCMs generally need some
‘tuning’ to reproduce observations. This is done by
adjusting parameters in the dynamical equations or in
the parameterizations in such a manner that observa-
tional structures appear, as faithfully as possible, like
the mid-latitudes storm track or the ocean thermoha-
line circulation. Modern computer power allows high
spatial resolution for the resolved scales and sophisti-
cated parameterizations of small-scale processes. The
climate simulated by GCMs has thus become increas-
ingly more realistic.7

The gap between conceptual models on the one
hand and GCMs on the other hand has steadily
widened over time, as GCMs became increasingly
more complex and thus more difficult to understand.
This has called for an intermediate class of models that
combine a conceptual approach with complexity.8,9

They incorporate more phenomenological assump-
tions than a GCM, like zonal averages, the observed
vertical structure of the atmosphere or the shape of
its large-scale circulation cells. They are less transpar-
ent than purely conceptual models and they are more
likely to produce information that cannot be foreseen
from their basic assumptions and that could possibly
be in conflict with observations. There is a practical
side too. State-of-the-art GCMs are made typically at
national facilities by ‘an army of foot soldiers’ to do
the modeling work, with the aim to run a few exper-
iments (e.g., a 100-year forecast) once on the largest
computer available. This type of model development
is often not feasible for a small research institute or
university department that may have access to less
computer power. At the same time there are limits
set by computer resources to the use of state-of-the-
art GCMs as research tools to systematically explore
a scientific question. Therefore, both scientific and

practical reasons led to the invention of intermediate-
complexity models that can be developed by relatively
small teams and can be run for long time scales or
many times, while being more realistic than conceptual
models.

Climate research has evolved over the last
decade toward an integrated approach that considers
more components of the Earth system than just
the atmosphere and ocean, like the biosphere, land
ice, biogeochemical cycles, and atmospheric chem-
istry. Intermediate-complexity models are eminently
suitable to explore interactions between the various
components. These two lines of development have
resulted in earth system models of intermediate com-
plexity (Ref 10). EMICs are denoted as intermediate-
complexity models, because they describe the climate
system in less spatial and temporal detail than GCMs
and they include processes in a more parameterized
form. They are simple enough to allow for long-term
or large-ensemble simulations. In contrast to concep-
tual models, the number of degrees of freedom of
EMICs exceeds the number of adjustable parameters
by several orders of magnitude.10 EMICs are useful
tools to tackle the wide range of processes which
are effective in changing the climate over a range
of timescales. Their continued development is often
driven by research questions that emerge from the
study of climate variations in the past as well as
possible future climate change.

THE SPECTRUM OF EMICS

EMICs come in many different varieties. Here
we distinguish two principal aspects: the level of
complexity of the atmosphere and ocean modules and
the (number of) other components of the Earth system
that are included. These two aspects are discussed in
the following subsections. An overview of EMICs is
given by Claussen et al.10 There is an EMICs network,
which maintains a website where an updated overview
can be downloaded, see under Further Reading at
the end of this paper. This Table of EMICs contains
detailed technical descriptions, an extensive list of
references and contacts for each model.

Intermediate-Complexity
Atmosphere–Ocean (AO) Models
An important impetus to develop fast atmospheric
models was the study of climate variations on
Milankovitch timescales and glacial-interglacial
cycles. For this purpose EBMs were extended to two
dimensions, taking the land–sea distribution and sea-
sonal cycle into account.11 A more advanced approach
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was taken by Gallée et al.,8 who developed a zonally
averaged quasi-geostrophic (QG) atmospheric model.
Such a model resolves meridional transports and is
thus suitable for coupling to an ice-sheet model. Both
models were used to study the atmospheric response
over several hundreds of thousands of years, the step
forward taken by Gallée et al.12 being the inclusion
of a dynamical ice-sheet model (cf. next section)

A second application of fast atmospheric models
was the study of the large-scale ocean circulation and
its role in the climate system. Here one needs simple
atmospheric models to provide heat and freshwater
boundary conditions that reflect the main atmospheric
feedbacks on variations in the ocean circulation.
Therefore, EBMs were extended to also describe the
atmospheric moisture budget.9 Generally moisture
transport is parameterized in EBMs in a similar way
as the heat transport, namely, by diffusion. It is not
necessary to compute the time-dependent behavior
of the atmosphere for this application, because the
atmosphere adjusts on a short timescale to the ocean
and focus is on the long-term variations in the
ocean. Boundary conditions, which can be derived
from the equilibrium heat and moisture budgets,
can also represent the atmospheric feedbacks.13,14

Some versions of moist EBMs include advection by
climatological (prescribed) winds,15 thus improving
the description of zonal transports by continental or
marine air masses and meridional moisture transport
in the tropics where the transport is counter gradient.
Alternatively, wind stress and moisture transport are
diagnosed from temperature gradients.16

Statistical dynamical (SD) models of the atmo-
sphere explicitly solve the fundamental equations of
motion for part of the flow, while containing sophis-
ticated parameterizations of the unresolved flow and
associated transports.17,18 In general, they simulate
more spatial detail than EBMs. They also contain
some representation of synoptic variability and the
tropical circulation cells, without having to prescribe
these from climatology. On the next level of complex-
ity, there are three-dimensional atmospheric models
based on the QG approximation or the full primitive
equations (PE). Examples are the QG atmospheric
model ECBilt,19 which contains a parameterization
of the unresolved ageostrophic flow, and the PE
models Portable University Model of the Atmosphere
(PUMA)20 and SPEEDY.21 The PE models could very
well be described as a simplified coarse-resolution
AGCM. They are included in the discussion here,
because they differ from GCMs in that they contain a
parameterization package that is specifically designed
and tuned for their coarse spatial resolution.

On the ocean side, there is less variety. Some
atmospheric modules are coupled to mixed-layer
oceans, representing a heat reservoir without dynam-
ics. Ocean circulation models are either zonally aver-
aged over separate basins22 or three dimensional. The
former represent the meridional flow, with a param-
eterization of the zonal pressure gradients that drive
the flow. The wind-driven circulation is obviously
neglected in this approach. Three-dimensional models
are mostly PE, but simplified systems based on geostro-
phy have also been developed.23 Sea-ice modules
within the ocean component are thermodynamic mod-
els in their simplest form, but can be more advanced
including sea-ice dynamics and/or advection.

Different modeling groups have taken different
views on how to design a coupled AO model of
intermediate complexity. This has resulted in a diverse
spectrum of models, with either the atmosphere or the
ocean in a reduced form and the other component
modeled in a more comprehensive manner, or both
components reduced. There also exist intermediate-
complexity models which have both components at a
level of complexity that is close to GCMs. The most
widely applied EMICs range from a sophisticated
OCGM coupled to an EBM atmosphere (UVic
24) or a QG atmosphere (ECBilt-CLIO; 25), to a
zonally averaged ocean coupled to a zonally averaged
QG atmosphere (MoBiDic; 26), a SD atmosphere
(CLIMBER; 18) or an EBM (Bern2.5D; 9) and finally
a mixed-layer ocean coupled to a PE atmosphere
(PUMA; 20). One model (GENIE; 27) is specifically
set-up in such a way that different components of
varying complexity can be combined, depending on
the research question.

Other Components of the Earth System
Many EMICs include other components beside the
atmosphere and ocean, although this is not true for
all EMICs and most allow configurations that are AO
only. The two most important additional components
are the biosphere and land ice, while first steps are
being taken to include atmospheric chemistry.

Biosphere models of varying complexity have
been used. They simulate the terrestrial carbon pool28

or the distribution of vegetation and the associated
carbon and water budgets.29,30 Some EMICs include
the ocean carbon cycle and possibly the dynamics of
other biogeochemical tracers.31–33 Biosphere models
generally have the same spatial resolution as the
atmosphere or ocean component to which they are
coupled.

Ice-sheet models are based on ice-mass con-
servation, with simple relations for ice flow, lateral
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discharge or calving.12,34 Ice-sheet models were first
coupled to the fastest type of atmospheric models
(EBMs, SD, or zonally averaged QG models), which
are most suited to simulate the long timescales of
glacial-interglacial cycles. The most challenging aspect
is to model the detailed geometry of ice sheets. In order
to do this, the climate forcing has to be downscaled
from the coarse resolution of the atmospheric compo-
nent to the necessary small spatial scales.35

Atmospheric chemistry models36 predict the
concentration of reactive gases in the atmospheric,
such as methane, ozone, and tens of other species.
Some of these are radiatively important and thus
feedback on climate, while climate influences chemical
reactions through transport by winds, ambient
temperatures, solar radiation etc.

A detailed overview of the components that are
included in different EMICs can be found in the
references given above for the individual models,
the review paper by Claussen et al.,10 the Table
of EMICs or the various EMIC Intercomparison
studies.37–40 EMICs are denoted as intermediate-
complexity models, primarily because of the reduced
form of their AO components. Many EMICs contain
ocean chemistry, vegetation, and land-ice components
that are similar in complexity to those coupled to
GCMs.24

RESEARCH QUESTIONS

The simplifications implemented in EMICS are such
that a given simulation may be performed using one to
several order of magnitudes less computational steps
than with a GCM. EMICs are thus computationally
fast by design. However, simplifications are often
made with the aim to address specific research
questions. For this reason, the spectrum of climate
models is not continuous. There are gaps and
irregularities, implying that there is no guarantee
that results obtained with one type of model can
be reproduced with another, possibly more complex
model. Keeping this caveat in mind, EMICs are
eminently suitable for hypothesis testing (what-if
questions). This type of research sets the scene for
the analysis of observations, model-intercomparison
studies and the design of GCM experiments. Here
we will discuss a number of examples, which have
been chosen specifically to illustrate the strengths
and weaknesses of EMICs. There is no intention
to give a comprehensive overview of research on
specific topics or even of research done with EMICs.
Wherever possible results obtained with EMICs will
be compared with GCM-based studies that were

performed at a later stage, when increased computer
power allowed such experiments.

The Transient Evolution of Climate
Many forcings of the climate system vary over time,
such as orbital, solar and volcanic forcing, land use
changes, or increasing greenhouse gas concentrations.
GCM experiments have often considered the climatic
response to these forcings in time-slices or snapshots,41

that is, assuming equilibrium between forcing and
response. This is often a useful approach. However, in
many cases transient experiments can add important
information and in some cases, like the deglaciation,
they are essential to understand the intrinsic non-
equilibrated behavior of the climate system. The
length of such transient experiments ranges from a few
hundred to hundreds of thousands of years, depending
on the forcing and the response timescale of the system
under consideration.

As noted above, an important early application
of intermediate-complexity models was the study of
orbital cycles in the climate system. Many paleodata
reflect monsoon-driven variations, as monsoons affect
climate over a large area. Because EBMs can only
address the temperature evolution, more complex
models were necessary to study monsoons. Phase
lags in the monsoon response to orbital forcing
were first studied with an intermediate-complexity
model.42 A transient OA-GCM experiment with
accelerated forcing (by a factor of 100), which was
conducted later by Kutzbach et al.,43 resulted in very
similar phase lags for the large-scale temperature
and monsoon response as obtained earlier with
reduced models.11,42 Obviously, the GCM experiment
described the evolutionary response in much more
spatial detail allowing a more extensive comparison
with paleodata.

Climate evolution during the last 10,000 years,
the Holocene, was also first studied with EMICs. This
revealed an abrupt change in Saharan vegetation44

and gradual shifts in boreal forests26 as the climate
became drier and cooler in response to orbital and
greenhouse gas forcing. The shift in boreal forests
has been identified in a range of model experiments
including time-slice sensitivity tests with an AGCM,45

but its timing could only be established by a transient
EMIC experiment and was found to be in reasonable
agreement with paleodata.26 A possible abrupt shift
in Saharan vegetation is still under debate. Transient
simulations for the Holocene were also done with
other forcing factors taken into account, showing the
importance of solar forcing for centennial variations at
large spatial scales46 and of remnant ice sheets for the
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early Holocene climate.47 The Holocene increase in
CO2 concentration is not prescribed, but interactively
modeled by Brovkin et al.48 They find that this
increase in CO2 is driven by a decrease in terrestrial
carbon storage, which was confirmed by a later GCM
study.49

Future climate change because of increasing
greenhouse gas concentrations is intensively studied
nowadays. Long-term projections by EMICs, which
include carbon cycle-climate feedbacks, are discussed
in the latest IPCC Assessment Report.40,50 These
extend to 3000 AD, in contrast to GCM-based
projections which extend only to 2300 AD. EMICs
have also considered the long-term fate of the ice
sheets51 and the onset of the next glaciation, which
may be delayed because of the warmer background
climate.52

Finally EMICs are extremely useful tools to
study abrupt changes in climate, like the glacial
Dansgaard–Oeschger events or the Bølling–Allerød
warming during the last deglaciation. This has
shown that such rapid events in the Northern
Hemisphere can be triggered by freshwater input
into the Atlantic ocean, inducing a switch from
one steady state to another one in the meridional
overturning circulation.53–55 Associated temperature
changes over Antarctica are more gradual.56 Such
long experiments, starting from an equilibrated glacial
state, are only starting to become feasible with
GCMs. A first GCM simulation of the Bølling–Allerød
warming showed a linear transient response of the
overturning circulation,57 rather than the abrupt shift
through nonlinear bifurcation as found in EMICs.
This discrepancy will be further discussed in the next
subsection.

The Atlantic Thermohaline Circulation
Since Stommel’s5 box-model experiments there has
been a strong interest in the bistability of the Atlantic
thermohaline circulation. Rahmstorf et al.38 first
studied the robustness of this behavior, which has
been found in many studies with ocean-only models,
in the framework of coupled AO models. They indeed
found hysteresis in a range of EMICs in response to
slowly varying freshwater forcing, with some models
having their present-day state in the bistable regime
and others in the monostable regime. The location
of the present-day state in the hysteresis diagram was
shown to be associated with the sign of a basin-scale
salinity advection feedback in EMIC simulations by
de Vries and Weber.58

Hysteresis experiments are as yet computation-
ally too demanding for coupled AO-GCMs. However,

shorter pulse experiments are feasible and these have
been performed many times. An intercomparison
study, including both GCMs and EMICs, showed
a resumption of the thermohaline circulation after ter-
mination of the pulse for all models.59 Although this
study did not find any systematic differences between
EMICs and coupled GCMs, it has been questioned
whether hysteresis of the thermohaline circulation
is an artefact of simplified models. Ocean model
improvements, like new parameterizations and mix-
ing schemes, do not affect the hysteresis behavior.60

The question of whether including all possible atmo-
spheric feedbacks makes hysteresis disappear can only
be resolved by putting coupled GCMs to the test. First
results indicate an absence of bistability,57 but we
note here that most existing GCMs seem to reside in
the monostable regime.61 Bistability has been found in
one coupled AO-GCM,62 implying that this question
is open for further debate.

The climate system has exhibited rapid shifts
during glacial periods, but not during the Holocene.
It is, therefore, important to perform this type of
experiments for a glacial background state. Hysteresis
behavior was found to be less pronounced during
glacial periods,53,63 because of the coldness of the
glacial climate which allows deep-water formation
to retreat gradually southward in the northern
Atlantic in response to surface freshwater input. Pulse
experiments show that the glacial circulation is more
easily perturbed, both in a coupled GCM64 and
EMIC,65 because of the larger sea-ice extent which
inhibits the restoring thermal feedback. Interactions
between the continental ice sheets and the ocean
are found to destabilize the glacial circulation even
more.66

To obtain a glacial thermohaline circulation is a
challenge in itself, because of the long response time
of the deep ocean to glacial boundary conditions.
A shallow overturning cell with reduced strength is
indicated by paleodata for conditions of the Last
Glacial Maximum (LGM; 21,000-years ago). EMIC
experiments have suggested that this weakening is
due to reduced net evaporation over the Atlantic
basin66 or to increased density of Antarctic bottom
water as compared with North Atlantic deep water.67

The latter mechanism has been confirmed by a
GCM study, where it was due to enhanced sea-
ice formation and export in the southern ocean.68

One EMIC-based study found that the overturning
response to cooling was nonlinear, with increased
overturning strength for moderate cooling and
weakened circulation for more intense cooling.69 A
model-intercomparison study of LGM experiments,
including both GCMs and EMICs, showed varying
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responses in the thermohaline circulation—both in
sign and amplitude.61 Notwithstanding these varying
responses, it was found that changes in the density
contrast between deep-water masses of southern and
northern origin was a controlling mechanism in the
majority of models.

Hindcasting, Assessing Uncertainties and
Forecasting
Apart from long simulations, EMICs can equally
well be applied to large ensembles. This allows to
examine the impact of uncertainties in the design
of experiments. Climate change signals recorded in
paleo data which cannot easily be explained motivated
diverse experiments applying freshwater pulses in the
North Atlantic ocean. One example is the meltwater
release attributable to the outburst flood of the
proglacial lake Agassiz thought to have caused the 8.2
kyear cold event70,71 and also the Meltwater pulse 1A
released around 14.5 kyear BP with unknown location
of release and apparently no climatic impact.72

Another approach to generate an ensemble is to
exploit uncertainties in model parameters. This was
applied to estimate the magnitude of global-mean
cooling during the LGM using empirical constraints
on regional cooling inferred from paleodata73 and
to investigate the response and predictability of the
climate to an increase in greenhouse gas concentration,
constraining the system with modern instrumental
data sets.74 The probability density function (PDF)
of, for example, the future rise in global-mean
temperature has been estimated from ensembles
generated by varying climate sensitivity and ocean heat
uptake.75,76 Different types of models and different
constraints result in considerably different PDFs,
especially with respect to the upper limit of expected
climate change.50

CONCLUSION

EMICs combine a conceptual approach with complex-
ity in modeling the dynamics of the atmosphere and
ocean, while often containing other components of
the Earth system as well. Many different approaches
exist to intermediate-complexity modeling, resulting
in considerable heterogeneity in model structure and
set-up. In general, EMICs are not suited to study
small spatial scales and/or high-frequency variations
in the climate system. They are designed for the larger
spatial and longer temporal scales, where the precise
definition of ‘large’ and ‘long’ obviously depends on
the specific model.

EMICs have been applied to a wide range
of research topics, including glacial cycles, the last
glacial inception, the possible delay of the next
glacial inception because of global warming, rapid
climate change like the Dansgaard–Oeschger and
Heinrich events, the Pliocene–Pleistocene transition,
Milankovitch cycles, atmosphere–vegetation interac-
tions in past and future climates, the Holocene carbon
cycle, the ocean response to glacial boundary con-
ditions, the effect of ocean circulation changes on
atmospheric radiocarbon, the bistability of the ocean’s
thermohaline circulation, decadal-centennial variabil-
ity and the role of solar and volcanic forcing, climate
forecasting using ensemble simulations, simulation
of Martian atmospheres, etc. A small selection was
discussed here to illustrate the scope of EMICs.
Many of these research topics cannot be addressed
by GCMs, for the simple reason of computational
limits—although this changes quickly because of fast
increases in computer power. Apart from computa-
tional efficiency, EMICs also have the advantage of
being more easy to analyze than GCMs because of
their (partly) conceptual design.

How has scientific thinking been changed by this
approach? From the present discussion we choose the
following examples as being most illustrative of the
power of EMICs:

1. The idea that human interference with climate
could have long-term effects, even to the next
glacial inception,52 and the objective estimation
of uncertainty in the shorter-term effects.75,76

2. The result that hysteresis in the ocean’s
thermohaline circulation is a robust feature of
the AO system,38 while the absence of hysteresis
is proposed to be due to model bias rather than
increased complexity.58

3. The finding that the Atlantic overturning
circulation becomes weaker and shallower in
a cold climate because of increased density of
Antarctic bottom water.67

4. The insight that a gradual change in the forcing
can result in an abrupt change in climate and
vegetation in a marginal zone like the Sahara.44

It is not clear a priori how model results will
be affected by neglecting some aspect of climate,
like synoptic-scale variability in the atmosphere or
the wind-driven circulation in the ocean. For this
reason, it is essential to address research questions
with a range of different models—as far as computer
resources allow. Some of the EMIC-based studies
discussed above have been repeated later with more
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complex models and even full GCMs. This has shown
a few discrepancies and, in many cases, consistent
results. Issues under debate are, for example, the mod-
eling of vegetation77 and feedbacks associated with the
carbon cycle.78 We note here that also GCM-based
studies can be inconsistent among each other and any
new, surprising and non-trivial result found with one
model—simple or complex—can be difficult to repro-
duce with another. Discrepancies between EMICs and
GCMs occur most notably in the dynamics of the
ocean’s thermohaline circulation, which exhibits mul-
tiple equilibria in EMICs but seems to respond linearly
in the majority of GCMs. Because of the limited num-
ber of available studies, it is as yet not clear whether
this discrepancy is due to the greater complexity of
GCMs or to other causes like model bias.

Computer power has increased immensely over
the last decades. This implies that today’s GCMs may

be considered as an EMIC in years to come. Current
GCMs still contain approximations, although they are
based on a fundamental form of the equations that
govern the changes of properties of the atmosphere
and ocean. Examples are the lack of stratospheric pro-
cesses, the crude representation of mixing in the ocean
or the hydrostatic approximation in the atmosphere
which is now abandoned in the latest generation of
high-resolution regional weather forecasting models.
The definition of an intermediate-complexity model
is thus not fixed, but may change over time. The
extension of the spectrum of climate models with
a range of EMICs has proven to be very useful. It
has widened the horizon of research questions that
can be addressed, thus paving the way and at the
same challenging research with more comprehensive
models.
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